A Combined Preconditioning Strategy for Nonsymmetric Systems
نویسندگان
چکیده
We present and analyze a class of nonsymmetric preconditioners within a normal (weighted least-squares) matrix form for use in GMRES to solve nonsymmetric matrix problems that typically arise in finite element discretizations. An example of the additive Schwarz method applied to nonsymmetric but definite matrices is presented for which the abstract assumptions are verified. A variable preconditioner, combining the original nonsymmetric one and a weighted least-squares version of it, is shown to be convergent and provides a viable strategy for using nonsymmetric preconditioners in practice. Numerical results are included to assess the theory and the performance of the proposed preconditioners.
منابع مشابه
Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations
Discretization and linearization of the steady-state Navier-Stokes equations gives rise to a nonsymmetric indeenite linear system of equations. In this paper, we introduce preconditioning techniques for such systems with the property that the eigenvalues of the preconditioned matrices are bounded independently of the mesh size used in the discretization. We connrm and supplement these analytic ...
متن کاملPreconditioning linear systems of the Navier–Stokes equations
Abstract In this paper we present an effective preconditioning strategy for solving nonsymmetric linear systems that arise from the stabilized finite element formulations for incompressible fluid flow computations. These linear systems are solved via preconditioned Krylov subspace methods in which linear systems involving the preconditioner are solved via a Richardson scheme. We analyze this ne...
متن کاملMultilevel ILU With Reorderings for Diagonal Dominance
This paper presents a preconditioning method based on combining two-sided permutations with a multilevel approach. The nonsymmetric permutation exploits a greedy strategy to put large entries of the matrix in the diagonal of the upper leading submatrix. The method can be regarded as a complete pivoting version of the incomplete LU factorization. This leads to an effective incomplete factorizati...
متن کاملPreconditioning Highly Indefinite and Nonsymmetric Matrices
Standard preconditioners, like incomplete factorizations, perform well when the coeecient matrix is diagonally dominant, but often fail on general sparse matrices. We experiment with nonsymmetric permutations and scalings aimed at placing large entries on the diagonal in the context of preconditioning for general sparse matrices. We target highly indeenite, nonsymmetric problems which cause dii...
متن کاملAdditive Schwarz with Variable Weights
For Additive Schwarz preconditioning of nonsymmetric systems, it is proposed to use weights that change from one iteration to the next. At each iteration, weights for all earlier iterations are implicitly chosen to minimize the current residual. This strategy fits the paradigm of the recently proposed multipreconditioned GMRES. Numerical experiments illustrating the potential of the proposed me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 36 شماره
صفحات -
تاریخ انتشار 2014